

Seventh Semester B.E. Degree Examination, January 2013 Image Processing

Time: 3 hrs. Max. Marks:100

Note: Answer FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. What is digital image processing? Explain the use of DIP in any two applications. (06 Marks)
 - b. What are the fundamental steps in DIP? Explain the working of each stage, with block diagram. (10 Marks)
 - c. Write a short note on brightness adoption and discrimination. (04 Marks)
- 2 a. Explain the adjacency, connectivity, regions and boundaries between pixels, with examples.

 (08 Marks)
 - b. Let V = {1, 2} and compute the D4 and D8 distances between p and q for the image segment. Indicate the shortest path with double line. (08 Marks)

	3	1	2	1	(q)
	2	2	0	2	
	1	2	1	1	
(p)	1	0	1	2	

- c. Develop an algorithm for converting a one pixel thick, 8 connected path to a 4 connected path.
 (04 Marks)
- 3 a. Explain the properties of unitary transforms and give 4 important unitary image transforms.

 (08 Marks)
 - b. Calculate the transformed image V and the basis images for orthogonal matrix A and image U

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, U = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}.$$
 (06 Marks)

- c. Discuss the properties of 2 dimensional DFT. (06 Marks)
- 4 a. Explain Haar transformation with its properties, compute the Haar transformation of 2×2 image $F = \begin{bmatrix} 3 & -1 \\ 6 & 2 \end{bmatrix}$. (08 Marks)
 - b. Define Hadmard transform, and generate Kernel for N = 4. (06 Marks)
 - c. Discuss the advantages and applications of the following transformations
 i) Cosine ii) Sine iii) Slant iv) KL. (06 Marks)

PART - B

- 5 a. Explain the image enhancement in spatial domain with log transformation and bit plane slicing techniques. (06 Marks)
 - b. Derive the equation for histogram equalization and mention its satisfied conditions.

(08 Marks)

- c. Explain the use of arithmetic and logical operations for image enhancement. (06 Marks)
- 6 a. Explain the different types of low pass spatial filters.

(08 Marks)

b. Explain the homomorphic filters for image enhancement.

- (06 Marks)
- c. What is the purpose of image restoration? Explain the image degradation and restoration, with suitable model. (06 Marks)
- 7 a. Explain any 4 noise probability density functions.

(08 Marks)

- b. What are the different types of mean filters used for noise. Reduction and explain in brief.
 (06 Marks)
- c. Explain the use of inverse filtering and minimum mean square error (wiener) filtering for handling noise. (06 Marks)
- 8 a. Convert the RGB colour model into HSI color model.

(08 Marks)

- b. Explain the pseudo color image processing and draw the intensity slicing curve for gray levels to 4 colours. (06 Marks)
- c. List three main properties of a median filter.

(03 Marks)

d. How many minute would it take to transmit a 1024 × 1024 image with 256 gray levels, using 56 kbps modem? (03 Marks)

* * * * *